W0. Introduction

W0.1

(W0.1) Give a general description of and introduction to your organization.

Johnson & Johnson and its subsidiaries (J&J) have approximately 136,400 employees worldwide engaged in the research and development, manufacture and sale of a broad range of products in the health care field. Johnson & Johnson is a holding company, with operating companies conducting business in virtually all countries of the world. The Company’s primary focus is products related to human health and well-being. The Company is organized into three business segments: Consumer Health, Pharmaceutical and Medical Devices.

Medical Devices

The Medical Devices segment includes a broad range of products used in the Interventional Solutions, Orthopaedics, Surgery, and Vision fields.

Pharmaceutical

The Pharmaceutical segment is focused on six therapeutic areas: Immunology (e.g., rheumatoid arthritis, inflammatory bowel disease and psoriasis), Infectious Diseases (e.g., HIV/AIDS), Neuroscience (e.g., mood disorders, neurodegenerative disorders and schizophrenia), Oncology (e.g., prostate cancer and hematologic malignancies), Cardiovascular and Metabolism (e.g., thrombosis and diabetes) and Pulmonary Hypertension (e.g., Pulmonary Arterial Hypertension).

Consumer Health

The Consumer Health segment includes a broad range of products focused on personal healthcare used in the skin health/beauty, over-the-counter medicines, baby care, oral care, women's health and wound care markets.

W0.2

(W0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>January 1 2020</td>
<td>December 31 2020</td>
</tr>
</tbody>
</table>

W0.3
Select the countries/areas for which you will be supplying data.

Argentina
Belgium
Brazil
Canada
China
Colombia
Dominican Republic
Egypt
France
Germany
Greece
India
Indonesia
Ireland
Israel
Italy
Japan
Malaysia
Mexico
Netherlands
Puerto Rico
Republic of Korea
South Africa
Spain
Sweden
Switzerland
Thailand
United Kingdom of Great Britain and Northern Ireland
United States of America
Venezuela (Bolivarian Republic of)

Select the currency used for all financial information disclosed throughout your response.

USD

Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.

Companies, entities or groups over which operational control is exercised

Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?

Yes

Please report the exclusions.

<table>
<thead>
<tr>
<th>Exclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities whose primary activities are not research and development (R&D), and/or manufacturing are excluded. For example, J&J does not collect water data from locations that house primarily administrative activities such as sales/marketing office buildings and warehouses.</td>
<td>Water impacts related to office buildings and warehouses are a de minimus source relative to the water sources included in J&J's overall water footprint.</td>
</tr>
<tr>
<td>Withdrawals of groundwater related to remediation of contamination.</td>
<td>Groundwater pump and treat projects may be operated at sites no longer entirely under J&J's control and/or operated by third parties. It is presumed that the volume of water not returned to the environment as a result of these activities is not significant relative to the footprint of our manufacturing and R&D activities.</td>
</tr>
<tr>
<td>Withdrawals of groundwater as drainage from construction activities.</td>
<td>Water withdrawn as drainage is as such returned to the environment. It is presumed that the volume of water not returned to the environment as a result of these activities is not significant relative to the footprint of our manufacturing and R&D activities.</td>
</tr>
<tr>
<td>Water data from manufacturing and research and development locations acquired via the purchase of a business within the last year.</td>
<td>We align our public environmental reporting to the operational boundary conditions established by our GHG Protocol. Under that Protocol, an acquisition is not included in reporting until 2 years from acquisition date.</td>
</tr>
</tbody>
</table>
W1.1

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th></th>
<th>Direct use importance rating</th>
<th>Indirect use importance rating</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient amounts of good quality freshwater available for use</td>
<td>Vital</td>
<td>Vital</td>
<td>Direct Use: Water is vital for our operations because high-quality water is required for use as a manufacturing aid and/or as a product ingredient. This is determined to be vital because future production could be compromised for certain product lines and processes if the water supply was insufficient. Indirect Use: The primary use of water in indirect operations is a manufacturing aid and/or a product ingredient. Indirect use is rated as vital because sufficient amounts of high-quality water must be used to pass product quality standards for certain categories of product, such as upstream suppliers for pharmaceutical ingredients. Primary Use: Water use varies depending on the product or business line, where for certain consumer goods (such as shampoo) most water use is distributed in our direct operations, whereas for other products most water use lies upstream in our value chain. Future water dependency is likely to remain the same (vital) for direct and indirect use given the nature of our product lines across Consumer Health, Pharmaceutical and Medical Devices Companies. While specific processes or product lines may change, our business segments (particularly Consumer Health and Pharmaceutical) will rely on high quality water in sufficient quantities as either an ingredient within our products or as a manufacturing aid.</td>
</tr>
<tr>
<td></td>
<td>Important</td>
<td>Important</td>
<td>Primary use - Direct Operations: Recycled water is used in operations as an offset for fresh water where appropriate, such as in manufacturing processes (e.g., cooling towers), but could be mitigated by internal efficiencies or supply chain diversification. Why this rating was chosen: the rating reflects the importance of offsetting fresh water usage when possible, especially in areas of water risk. However, recycled/brackish water is not of sufficient quality to be used as a product ingredient and is therefore not 'vital'. Primary use - Indirect Operations: As with direct operations, recycled water is used as a manufacturing aid for reducing fresh water usage in our supply chain. Why this rating was chosen: it is rated as important for reducing overall water impact, as some of our supply chain may be in areas of water stress and/or water-intensive industries, but not vital because it does not meet quality standards necessary for use in products. Future recycled water dependency for both direct and indirect operations is likely to remain the same given the nature of our product lines across Consumer Health, Pharmaceutical and Medical Devices business segments and the water needs of our suppliers. While specific processes or product lines may change, it is not expected that recycled water could be used as a product ingredient in the future. Our business segments will use recycled water to offset fresh water usage when feasible.</td>
</tr>
<tr>
<td>Future water dependency is likely to remain the same (vital) for direct and indirect use given the nature of our product lines across Consumer Health, Pharmaceutical and Medical Devices Companies. While specific processes or product lines may change, our business segments (particularly Consumer Health and Pharmaceutical) will rely on high quality water in sufficient quantities as either an ingredient within our products or as a manufacturing aid.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sufficient amounts of recycled, brackish and/or produced water available for use</td>
<td>Important</td>
<td>Important</td>
<td>Primary use - Direct Operations: Recycled water is used in operations as an offset for fresh water where appropriate, such as in manufacturing processes (e.g., cooling towers), but could be mitigated by internal efficiencies or supply chain diversification. Why this rating was chosen: the rating reflects the importance of offsetting fresh water usage when possible, especially in areas of water risk. However, recycled/brackish water is not of sufficient quality to be used as a product ingredient and is therefore not 'vital'. Primary use - Indirect Operations: As with direct operations, recycled water is used as a manufacturing aid for reducing fresh water usage in our supply chain. Why this rating was chosen: it is rated as important for reducing overall water impact, as some of our supply chain may be in areas of water stress and/or water-intensive industries, but not vital because it does not meet quality standards necessary for use in products. Future recycled water dependency for both direct and indirect operations is likely to remain the same given the nature of our product lines across Consumer Health, Pharmaceutical and Medical Devices business segments and the water needs of our suppliers. While specific processes or product lines may change, it is not expected that recycled water could be used as a product ingredient in the future. Our business segments will use recycled water to offset fresh water usage when feasible.</td>
</tr>
</tbody>
</table>

W1.2

CDP
Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

Water withdrawals – total volumes	100%	Our organization monitors all ‘water withdrawals - total volumes’ as part of our approach to water efficiency and water risk management. The frequency of monitoring ranges based on billing periods (monthly to quarterly being most common) for water withdrawals from third parties (such as municipal). For locations where a meter is not available, water withdrawal is calculated based on records of pump operation and flow rate either quarterly or annually. Excluded sources, such as certain facility types (administrative, sales, warehouses, marketing locations), and withdrawals of groundwater (for remediation of contamination or as drainage for construction activities), are a de minimus source relative to the water sources included. In this row, ‘facilities’ refers to all manufacturing and R&D sites as defined by our operational boundary.
Water withdrawals – volumes by source	100%	Our organization monitors all ‘water withdrawals - volumes by source’ as part of our approach to water efficiency and water risk management. The frequency of monitoring ranges based on billing periods (monthly to quarterly being most common) for water withdrawals from third parties (such as municipal). All water withdrawals are categorized by source and maintained within internal tracking systems for corporate reporting. For locations where a meter is not available, water is calculated based on records of pump operation and flow rate either quarterly or annually. Excluded sources, such as certain facility types (administrative, sales, warehouses, marketing locations), and withdrawals of groundwater (for remediation of contamination or as drainage for construction activities), are a de minimus source relative to the water sources included. In this row, ‘facilities’ refers to all manufacturing and R&D sites as defined by our operational boundary.
Produced water associated with your oil & gas sector activities – total volumes (only oil and gas sector)	<Not Applicable>	<Not Applicable>
Water withdrawals quality	100%	As per standard J&J requirement, all facilities are required to determine, at least annually, the acceptability of drinking water supply by applying local, regional, or national drinking water-quality standards. Where there are no such standards, the World Health Organization (WHO) guidelines are applied. Water that is used in process operations is subject to quality verification as determined by the requirements outlined in the appropriate quality assurance. The frequency of monitoring is based on the point of use, criticality of use, historical data, etc. and can range from continuous to annual. In this row, ‘facilities’ refers to all manufacturing and R&D sites as defined by our operational boundary. Excluded sources, such as certain facility types (administrative, sales, warehouses, marketing locations), and withdrawals of groundwater (for remediation of contamination or as drainage for construction activities), are a de minimus source relative to the water sources included.
Water discharges – total volumes	100%	Our organization monitors all ‘Water discharges – total volumes’. Discharges are typically subject to permits which require metering and monitoring. The frequency of monitoring ranges based on billing periods (monthly to quarterly being most common) from vendor meters and/or meters that are subject to government approval for use. For locations where a meter is not available, water output is calculated based on mass balance equations to account for water use in products and/or processes. In this row, ‘facilities’ refers to all manufacturing and R&D sites as defined by our operational boundary. Excluded sources, such as certain facility types (administrative, sales, warehouses, marketing locations), and withdrawals of groundwater (for remediation of contamination or as drainage for construction activities), are a de minimus source relative to the water sources included.
Water discharges – volumes by destination	100%	Our organization monitors all ‘Water discharges – volumes by destination’. Discharges are typically subject to permits which require metering and monitoring, and all wastewater is categorized by destination for reporting. The frequency of monitoring ranges based on billing periods (monthly to quarterly being most common) from vendor meters and/or meters that are subject to government approval for use. For locations where a meter is not available, water output is calculated based on mass balance equations to account for water use in products and/or processes. In this row, ‘facilities’ refers to all manufacturing and R&D sites as defined by our operational boundary. Excluded sources, such as certain facility types (administrative, sales, warehouses, marketing locations), and withdrawals of groundwater (for remediation of contamination or as drainage for construction activities), are a de minimus source relative to the water sources included.
Water discharges – volumes by treatment method	100%	Our organization monitors all ‘Water discharges – volumes by treatment method’. Discharges are typically subject to permits which require metering and monitoring, and all wastewater is categorized by treatment method for reporting. The frequency of monitoring ranges based on billing periods (monthly to quarterly being most common) from vendor meters and/or meters that are subject to government approval for use. For locations where a meter is not available, water output is calculated based on mass balance equations to account for water use in products and/or processes. In this row, ‘facilities’ refers to all manufacturing and R&D sites as defined by our operational boundary. Excluded sources, such as certain facility types (administrative, sales, warehouses, marketing locations), and withdrawals of groundwater (for remediation of contamination or as drainage for construction activities), are a de minimus source relative to the water sources included.
Water discharge quality – by standard effluent parameters	100%	Our organization monitors all ‘Water discharge quality – by standard effluent parameters’ where required by local law or permitting. Pursuant to discharge permit conditions and/or internal company requirements, discharge quality data comes via onsite analysis and/or offsite analysis by appropriately accredited laboratories. Manufacturing and R&D sites with direct discharge to surface water yearly report selected parameters to corporate. The frequency of monitoring discharge quality will vary based on permit requirements, which may range from continuous to annual. In this row, ‘facilities’ refers to all manufacturing and R&D sites as defined by our operational boundary. Excluded sources, such as certain facility types (administrative, sales, warehouses, marketing locations), and withdrawals of groundwater (for remediation of contamination or as drainage for construction activities), are a de minimus source relative to the water sources included.
Water discharge quality – temperature	100%	Our organization monitors ‘Water discharge quality – temperature’ if required per discharge permit, which is often, but not always, required. Pursuant to discharge permit requirements, discharge quality data comes via onsite analysis and/or offsite analysis by appropriately accredited laboratories. The frequency of monitoring discharge quality will vary based on permit requirements, which may range from continuous to annual. In this row, ‘facilities’ refers to all manufacturing and R&D sites as defined by our operational boundary. Excluded sources, such as certain facility types (administrative, sales, warehouses, marketing locations), and withdrawals of groundwater (for remediation of contamination or as drainage for construction activities), are a de minimus source relative to the water sources included.
Water consumption – total volume	100%	Water consumption – total volume is monitored indirectly as part of our corporate water reporting program, though some facilities may track this directly as part of water efficiency measures. This is generally calculated as total withdrawals subtracted by water discharge at a corporate level. The frequency of monitoring ranges based on water source, with municipal/vendor sources typically tracked monthly or quarterly, and other sources (such as groundwater, recycled water, etc.) typically tracked quarterly or annually based on onsite meters and/or mass balance calculations. All water sources including recycled water are categorized by source and maintained within internal tracking systems for corporate reporting. In this row, ‘facilities’ refers to all manufacturing and R&D sites as defined by our operational boundary. Excluded sources, such as certain facility types (administrative, sales, warehouses, marketing locations), and withdrawals of groundwater (for remediation of contamination or as drainage for construction activities), are a de minimus source relative to the water sources included.
Water recycled/reused	100%	Our organization monitors all ‘Water recycled/reused’ as part of our approach to water efficiency and water risk management. The frequency of monitoring ranges based on a number of factors but is generally quarterly or annually and is based on onsite meters and/or mass balance calculations. All water sources including recycled water are categorized by source and maintained within internal tracking systems for corporate reporting. In this row, ‘facilities’ refers to all manufacturing and R&D sites as defined by our operational boundary. Excluded sources, such as certain facility types (administrative, sales, warehouses, marketing locations), and withdrawals of groundwater (for remediation of contamination or as drainage for construction activities), are a de minimus source relative to the water sources included.
The provision of fully-functioning, safety-managed WASH services to all workers	100%	Our organization monitors ‘the provision of fully-functioning, safety-managed WASH services to all workers’ as part of our approach to Environmental Health, Safety & Sustainability (EHS&S) and our public commitment to the Human Right to Water. This is monitored on an ongoing basis, where all locations have access to clean drinking water and water for washing, where some locations have on-site showers. For our Company, ‘facilities’ refers to all locations within our operational boundary in all geographies.
(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, and how do these volumes compare to the previous reporting year?

<table>
<thead>
<tr>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawals</td>
<td>Lower</td>
<td>Total withdrawals decreased by 5.3%, as fewer employees were working on site at J&J facilities due to the COVID-19 pandemic. Reductions can also be attributed to the implementation of water reduction and water recycling projects. Many capital projects implemented over the past several years (21 in 2020) contributed to that trend. This figure is based on a combination of data including invoices, onsite meters, and mass balance calculations which are compiled into an online reporting platform for corporate reporting. The level of uncertainty is expected to be minimal arising from data gaps, assumptions and metering/measuring constraints. We anticipate water consumption to increase back to pre-pandemic levels as employees return to work. After that normalization, we expect withdrawals to stay the same or decrease in the future (offsetting growth) as we continue to implement water efficiency projects as part of our Water Risk program. Excluded sources, such as certain facility types (administrative, sales, warehouses, marketing locations), and withdrawals of groundwater (for remediation of contamination or as drainage for construction activities), are a de minimus source relative to the water sources included. In this row, ‘facilities’ refers to all manufacturing and R&D sites as defined by our operational boundary.</td>
</tr>
<tr>
<td>Total discharges</td>
<td>Lower</td>
<td>Total discharges decreased by 4.9% as fewer employees were working on site at J&J facilities due to the COVID-19 pandemic. Lower discharges can also be attributed to a combination of factors including increased investment in recycled water and wastewater treatment projects. This figure is based on a combination of data including invoices, onsite meters, and mass balance calculations which are compiled into an online reporting platform for corporate reporting. The level of uncertainty is expected to be minimal arising from data gaps, assumptions and metering/measuring constraints. We expect water discharge to increase back to pre-pandemic levels as employees return to the workplace. After that normalization, we expect discharges to decrease in the future on a similar path as we continue to implement water efficiency projects as part of our Water Risk program. Excluded sources, such as certain facility types (administrative, sales, warehouses, marketing locations), and withdrawals of groundwater (for remediation of contamination or as drainage for construction activities), are a de minimus source relative to the water sources included. In this row, ‘facilities’ refers to all manufacturing and R&D sites as defined by our operational boundary.</td>
</tr>
<tr>
<td>Total consumption</td>
<td>Lower</td>
<td>Total consumption has decreased by 6.1%, as fewer employees were working on site at J&J facilities due to the COVID-19 pandemic. This reduction in consumption also can be attributed to several factors, including increased recycled water usage, and shifts in water-intensive product categories. While some sites may calculate consumption onsite, this is not standard across all facilities. This figure is therefore based on a Company-wide calculation (using Consumption = Withdrawals – Discharges, or 11,087 total withdrawals – 7,561 discharges = 3,526 megaliters total consumption). The majority of this is volume incorporated into products, though evaporation/ transpiration is a relevant contribution. We expect water consumption to increase back to pre-pandemic levels as employees return to the workplace. After that normalization, we expect consumption to stay the same or decrease as we improve efficiencies within our manufacturing process and/or product design. Excluded sources, such as certain facility types (administrative, sales, warehouses, marketing locations), and withdrawals of groundwater (for remediation of contamination or as drainage for construction activities), are a de minimus source relative to the water sources included. In this row, ‘facilities’ refers to all manufacturing and R&D sites as defined by our operational boundary.</td>
</tr>
</tbody>
</table>

(W1.2d) Indicate whether water is withdrawn from areas with water stress and provide the proportion.

<table>
<thead>
<tr>
<th>Withdrawals from areas with water stress</th>
<th>% withdrawn from areas with water stress</th>
<th>Comparison with previous reporting year</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
<td>26-50</td>
<td>About the same</td>
<td>WRIR Aqueduct</td>
</tr>
</tbody>
</table>

W1.2h
W1.2i Provide total water discharge data by destination.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers, and lakes</td>
<td>Relevant</td>
<td>279</td>
<td>Higher</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Groundwater – renewable</td>
<td>Relevant</td>
<td>3083</td>
<td>Higher</td>
</tr>
<tr>
<td>Groundwater – non-renewable</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Produced/Entrained water</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Third party sources</td>
<td>Relevant</td>
<td>7725</td>
<td>Lower</td>
</tr>
</tbody>
</table>

W1.2j Provide total water withdrawal data by source.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Relevant</td>
<td>2262</td>
<td>Lower</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Relevant</td>
<td>175</td>
<td>Higher</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Third-party destinations</td>
<td>Relevant</td>
<td>5124</td>
<td>Higher</td>
</tr>
</tbody>
</table>
Within your direct operations, indicate the highest level(s) to which you treat your discharge.

<table>
<thead>
<tr>
<th>Treatment Level</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison of treated volume with previous reporting year</th>
<th>% of sites/facilities/operations this volume applies to</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary treatment</td>
<td>Relevant</td>
<td>1309</td>
<td>This is our first year of measurement</td>
<td>1-10</td>
<td>5 facilities apply tertiary treatment involving e.g. separate nitrification/denitrification, activated carbon adsorption or advanced oxidation. This is a relevant amount since it represents 34% of the total amount of wastewater discharged.</td>
</tr>
<tr>
<td>Secondary treatment</td>
<td>Relevant</td>
<td>2588</td>
<td>This is our first year of measurement</td>
<td>41-50</td>
<td>46 facilities apply secondary treatment involving biological treatment or advanced filtration treatment. This is a relevant amount since it represents 17% of the total amount of wastewater discharged.</td>
</tr>
<tr>
<td>Primary treatment only</td>
<td>Relevant</td>
<td>1504</td>
<td>This is our first year of measurement</td>
<td>11-20</td>
<td>17 facilities apply primary treatment involving physical/chemical treatment and/or pH neutralisation. This is a relevant amount since it represents 20% of the total amount of wastewater discharged.</td>
</tr>
<tr>
<td>Discharge to the natural environment without treatment</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>None of the facilities discharge to the natural environment without treatment. The J&J EHS&S standards require sites to provide wastewater with at least primary treatment, and where appropriate, secondary or tertiary treatment, prior to its discharge to the environment. Therefore, this level of treatment is not relevant.</td>
</tr>
<tr>
<td>Discharge to a third party without treatment</td>
<td>Relevant</td>
<td>2106</td>
<td>This is our first year of measurement</td>
<td>31-40</td>
<td>41 facilities have no on-site treatment but discharge their wastewater off-site for treatment by a third party (municipal treatment). This is a relevant amount since it represents 29% of the total amount of wastewater discharged.</td>
</tr>
<tr>
<td>Other</td>
<td>Please select</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td></td>
</tr>
</tbody>
</table>

Do you engage with your value chain on water-related issues?

Yes, our suppliers

Yes, our customers or other value chain partners

What proportion of suppliers do you request to report on their water use, risks and/or management information and what proportion of your procurement spend does this represent?

Row 1

% of suppliers by number
Less than 1%

% of total procurement spend
1-25

Rationale for this coverage

As the world’s largest, most broadly-based healthcare company, J&J works with more than 51,000 suppliers across our three business segments. To prioritize engagement around sustainability issues including water, we have set a Health for Humanity 2020 Goal to enrol suppliers in our Sustainable Procurement Program (SPP) covering 80% of our spend. The SPP 1) ensures supplier conformance with J&J’s Responsibility Standards for Suppliers; and 2) encourages and supports suppliers in achieving excellence by embedding sustainable social and environmental practices, including transparency, target setting and public disclosure, into their businesses and respective supply chains. We further prioritize our suppliers by requesting that those with water-intensive operations or those in water-stressed areas report using the CDP Supply Chain Water Security Questionnaire. Incentives include reporting CDP scores in Supplier scorecards among other indicators.

Impact of the engagement and measures of success

Information requested from suppliers includes responding to the CDP Supply Chain Water Security Questionnaire, which contains a mixture of quantitative and qualitative disclosure on water risk. This information is used in Supplier Scorecards, which include a mixture of other topics. These scorecards are reviewed on an ongoing basis with J&J category leaders to drive performance. Success is measured by increasing the number of suppliers who report to the CDP Supply Chain Water Security Questionnaire and enrol in the SPP program. For example, in 2020, we achieved the highest number of suppliers responding (121) with a 79% participation rate.

Comment
(W1.4b) Provide details of any other water-related supplier engagement activity.

Type of engagement
Onboarding & compliance

Details of engagement
Requirement to adhere to our code of conduct regarding water stewardship and management

% of suppliers by number
76-100

% of total procurement spend
76-100

Rationale for the coverage of your engagement
We articulate our expectations of supplier business conduct in the Johnson & Johnson Responsibility Standards for Suppliers (Standards). Our Standards include a standard to reduce the environmental impacts of suppliers’ operations including wastewater discharges and management, ensuring compliance and protection of human health and the environment. Rationale for the coverage of engagement: All suppliers are required to adhere to the Standards.

Impact of the engagement and measures of success
Beneficial outcomes of this activity include reducing our risk from harmful wastewater discharges in our supply chain that could have environmental and reputational consequences. Success is measured by all suppliers understanding and complying with the requirements set forth in this document. We include elements of the Standards in Purchase Order terms and conditions, Contract Templates and Requests for Proposals, and take steps to assess our suppliers’ conformance to them.

Comment

(W1.4c) What is your organization's rationale and strategy for prioritizing engagements with customers or other partners in its value chain?

Engaged partners and method/strategy of engagement: J&J engages with its customers on water stewardship efforts mainly through our Earthwards process. Earthwards has served as an approach to identify and quantify improvement opportunities across seven key sustainability impact areas: materials, packaging, energy, waste, water, social impact and innovation. The rationale for this approach to water in our value chain is to integrate water with other critical sustainability components of product sustainability. Success is measured through our Health for Humanity 2020 Goal for new and existing products representing 20% of J&J’s revenue to achieve Earthwards recognition for sustainability innovation improvements, which may include water. This goal was met early in 2019. At the end of 2020, Earthwards recognized products represented 24.6% of J&J’s revenue.

(W2.1) Has your organization experienced any detrimental water-related impacts?

Yes

(W2.1a)
(W2.1a) Describe the water-related detrimental impacts experienced by your organization, your response, and the total financial impact.

Country/Area & River basin

| South Africa | Other, please specify (SOUTH AFRICAN WATER MANAGEMENT AREAS (WMAs)) |

Type of impact driver & Primary impact driver

| Physical | Drought |

Primary impact

Constraint to growth

Description of impact

A severe multi-year drought in Cape Town, South Africa impacted our Cape Town facility that produces some products in our Consumer Health segment for mainly African and European markets. From February 2017 onward, increasing levels of water restrictions were imposed by the government as 'Day Zero', or the depletion of the city's water supply. While the output for J&J's production at this site was not impacted, this event required significant updates to Business Continuity Plans in case a complete disruption of water supply occurred. These updates included capital investments for water efficiency projects, ensuring product supply, and ensuring that local employees and their families were supported. Scale of impact: This event qualified as a substantive operational and/or strategic risk, despite the fact that there was no impact to production, because there was a 'highly likely' probability of water shortages for that facility where one or more product lines for one or more countries could be affected.

Primary response

Amend the Business Continuity Plan

Total financial impact

479,514

Description of response

To respond to the potential detrimental impact at the Cape Town facility, a Project Steering Committee was formed to update the Business Continuity Plan and approach the problem to save water, secure water, secure product, and secure people. To save water, initiatives were implemented to reduce consumption, harvest water or increase the use of greywater for ancillary processes. To secure water, two projects were approved to provide the site with buffer storage capacity to absorb water supply interruptions and to provide the site with an alternative water source. To secure product, teams investigated dual sourcing and re-siting options for critical products. To secure people, Company personnel ensured appropriate working conditions on site. This response strategy is part of the broader J&J Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing and R&D sites and to implement resource protection plans at high-risk sites. The response strategy began implementation in 2017 and continued through 2020. The response is expected to be effective in preventing future financial and operational impacts and to improve water security at that site. The cost estimate of impact was derived from the total cost of capital investments for projects implemented at the Cape Town facility from 2018 to 2020 to mitigate water risk. This figure is the most appropriate because production was not reduced, and sales were not impacted.

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

Yes, fines

(W2.2a) Provide the total number and financial value of all water-related fines.

Row 1

Total number of fines	7
Total value of fines	5200
% of total facilities/operations associated	0.88

Number of fines compared to previous reporting year

Higher

Comment

(W2.2b) Provide details for all significant fines, enforcement orders and/or other penalties for water-related regulatory violations in the reporting year, and your plans for resolving them.

<table>
<thead>
<tr>
<th>Type of penalty</th>
<th>Fine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial impact</td>
<td>5200</td>
</tr>
</tbody>
</table>

Country/Area & River basin

| United States of America | Savannah River |

Type of incident

Effluent limit exceedances

Description of penalty, incident, regulatory violation, significance, and resolution

Penalties received for exceedances of phosphorus discharge limit at one of our sites in GA, USA in 2020. The exceedances were caused by malfunctioning of a real-time monitoring piece of equipment and the delay of delivery of a wastewater treatment chemical needed to control phosphorus discharge. The issues were resolved by maintaining backup supply of chemicals to allow for possible vendor supply chain disruptions; and upgrading existing pumps and modifying the inventory of backup equipment.

W3. Procedures

W3.3

(W3.3) Does your organization undertake a water-related risk assessment?
Yes, water-related risks are assessed

W3.3a

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.

Direct operations

Coverage

Full

Risk assessment procedure

Water risks are assessed as part of an enterprise risk management framework

Frequency of assessment

Annually

How far into the future are risks considered?

More than 6 years

Type of tools and methods used

Tools on the market

WRI Aqueduct
WWF Water Risk Filter
Internal company methods
External consultants

Comment

Each manufacturing and/or R&D site undergoes a comprehensive water risk assessment that evaluates many aspects of water risk. This process uses several water stress models that include the Water Supply Stress Index Model (WaSSI), WRI Aqueduct, Water Risk Filter, EarthStat, and SEDAC, which have varying assumptions but include risks/impacts 10+ years into the future. Each high-water risk site develops a mitigation plan which includes budget allocations to mitigate risk. This assessment occurred for all facilities in 2016, and in subsequent years (2018 and 2019), additional assessments occurred for acquisitions and changes to methodology (such as the recent updates to the WRI Aqueduct). In 2020, we reviewed these water risk assessments for manufacturing and/or R&D sites. Water risk was reviewed based on water withdrawal per site and based on the Aqueduct baseline water stress level, and the Aqueduct water depletion level.
Supply chain
Coverage
Full
Risk assessment procedure
Water risks are assessed as part of an enterprise risk management framework
Frequency of assessment
Annually
How far into the future are risks considered?
1 to 3 years
Type of tools and methods used
Other
Tools and methods used
Internal company methods
Other, please specify (CDP Supply Chain Water Security; WRI Aqueduct)
Comment
Water risks are assessed as part of ongoing supply chain business continuity planning and through our Sustainable Procurement Program (SPP). Information requested from suppliers includes responding to the CDP Supply Chain Water Security Questionnaire. Selection to respond to the CDP Supply Chain Water Security Questionnaire is based on the supplier's location in water stressed areas, proportion of procurement spend, and the type of service they provide to J&J. This information is used in Supplier Scorecards, which include a mixture of other compliance, EHS&S and business continuity topics. These scorecards are reviewed on an ongoing basis with Company category leads to drive performance.

Other stages of the value chain
Coverage
None
Risk assessment procedure
<Not Applicable>
Frequency of assessment
<Not Applicable>
How far into the future are risks considered?
<Not Applicable>
Type of tools and methods used
<Not Applicable>
Tools and methods used
<Not Applicable>
Comment

W3.3b
(W3.3b) Which of the following contextual issues are considered in your organization’s water-related risk assessments?

<table>
<thead>
<tr>
<th>Relevance & Inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water availability at a basin/catchment level</td>
<td>Water availability at a basin/catchment level is relevant because of the use of water as a manufacturing aid and/or product ingredient across our business segments (Consumer Health, Pharmaceutical, and Medical Devices). Availability at the basin level can vary significantly based on geography even within a country — for example, of our 10 sites in China, two are characterized as high-risk (in part) because of water availability at the basin level in the Yangtze River & Huang He River basins. This issue is incorporated into our direct operations for current and emerging issues through our comprehensive water risk assessment tool. As part of our Health for Humanity 2020 Goal, we have evaluated all of our manufacturing and R&D sites for water risk. This risk assessment evaluates both water withdrawal and discharges, including: water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory issues, total water use, economic implications (water spend), reputational impacts, and pharmaceuticals in the environment (PE) and personal care products in the environment (PCPE).</td>
</tr>
<tr>
<td>Water quality at a basin/catchment level</td>
<td>Water quality at a basin/catchment level is relevant because of the use of water as a manufacturing aid and/or product ingredient across our business segments (Consumer Health, Pharmaceutical, and Medical Devices). Water quality is particularly important in our Consumer Health and Pharmaceutical business segments (representing ~41% of our total water use), where pharmaceutical manufacturing often requires high quality water inputs. This issue is incorporated into our direct operations for current and emerging issues through our comprehensive water risk assessment tool. As part of our Health for Humanity 2020 Goal, we have evaluated all of our manufacturing and R&D sites for water risk. This risk assessment evaluates both water withdrawal and discharges, including: water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory issues, total water use, economic implications (water spend), reputational impacts, and pharmaceuticals in the environment (PE) and personal care products in the environment (PCPE).</td>
</tr>
<tr>
<td>Stakeholder conflicts concerning water resources at a basin/catchment level</td>
<td>As stated in our Position on Water and Waste Management, as part of our commitment to better health for all, we strive to conserve water resources and meet the water demand for our operations without limiting the availability or quality of water resources to others. Stakeholder conflicts concerning water resources at a basin/catchment level is also relevant as part of our Position on Human Right to Water, and our principle to operate in a manner that will not diminish community water resources. While this issue is important everywhere, it may be particularly relevant in areas of high water stress. This issue is incorporated into our direct operations for current and emerging issues through our comprehensive water risk assessment tool. As part of our Health for Humanity 2020 Goal, we have evaluated all of our manufacturing and R&D sites for water risk. This risk assessment evaluates both water withdrawal and discharges, including: water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory issues, total water use, economic implications (water spend), reputational impacts, and pharmaceuticals in the environment (PE) and personal care products in the environment (PCPE).</td>
</tr>
</tbody>
</table>
| Implications of water on your key commodities/raw materials | Implications of water on key commodities/raw materials is relevant as a business continuity issue in our supply chain, as some of our 51,000 suppliers may be in areas of water stress and/or in industries that are water intensive. This issue is incorporated into our direct operations for current and emerging issues through our comprehensive water risk assessment tool and our Sustainable Procurement Program (SPP). We assess supplier risk for water-related issues prior to requesting participation in the CDP Supply Chain Water Security Questionnaire by conducting a review of suppliers in water-intensive operations and/or located in water-stressed areas. This assessment requests information on current water consumption, risk exposure, water risks & opportunities, governance, business strategy, targets, and other water-related data information. We have set a Health for Humanity 2020 Goal to enroll suppliers in our SPP covering 80% of our spend. The SPP 1) ensures supplier compliance with the Johnson & Johnson Responsibility Standards for Suppliers; and 2) encourages and supports suppliers in achieving excellence by embedding sustainable social and environmental practices, including transparency, target setting and public disclosure, into their businesses and respective supply chain. A subset of this program tracks the Planet Water Program, which is an internally developed tool that indirectly considers water risk to certain raw materials originating from forest commodities such as wood-fiber and palm oil. Deforestation and forest degradation contribute to greenhouse gas emissions, biodiversity loss, shifts in water cycles and loss of economic value. Water’s impact on forest commodities is broadly assessed as part of a larger strategy to minimize our environmental footprint across our forest materials portfolio through the Wood Product Sustainability Policy and our Responsible Palm Oil Sourcing Policy. We also engage customers on product sustainability through our Earthwards program, which identifies and encourages and supports suppliers in achieving excellence by embedding sustainable social and environmental practices, including transparency, target setting and public disclosure, into their businesses and respective supply chain. A subset of this program tracks the Planet Water Program, which is an internally developed tool that indirectly considers water risk to certain raw materials originating from forest commodities such as wood-fiber and palm oil. Deforestation and forest degradation contribute to greenhouse gas emissions, biodiversity loss, shifts in water cycles and loss of economic value. Water’s impact on forest commodities is broadly assessed as part of a larger strategy to minimize our environmental footprint across our forest materials portfolio through the Wood Product Sustainability Policy and our Responsible Palm Oil Sourcing Policy. We also engage customers on product sustainability through our Earthwards program, which identifies and encourages and supports suppliers in achieving excellence by embedding sustainable social and environmental practices, including transparency, target setting and public disclosure, into their businesses and respective supply chain. A subset of this program tracks the Planet Water Program, which is an internally developed tool that indirectly considers water risk to certain raw materials originating from forest commodities such as wood-fiber and palm oil. Deforestation and forest degradation contribute to greenhouse gas emissions, biodiversity loss, shifts in water cycles and loss of economic value. Water’s impact on forest commodities is broadly assessed as part of a larger strategy to minimize our environmental footprint across our forest materials portfolio through the Wood Product Sustainability Policy and our Responsible Palm Oil Sourcing Policy.

(W3.3c) Which of the following stakeholders are considered in your organization’s water-related risk assessments?

<table>
<thead>
<tr>
<th>Relevance & Inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers</td>
<td>Customers are relevant and always included as part of water-related risk assessments, as water represents a critical resource for all our customers. At an enterprise level, we engage with our customers through direct meetings, customer visits and our ESG Leaders Network, and industry trade meetings. Feedback about water issues specifically may come from customers on a subset of these methods to understand general trends. The importance of water-related issues is considered for all three stages of the value chain, where operational risk is particularly relevant (both current and in the future). Operational water-risk issues are managed through our Water Risk Assessment tool, which evaluates water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory issues, total water use, economic implications (water spend), reputational impacts, and pharmaceuticals in the environment (PE) and personal care products in the environment (PCPE). We also engage customers on product sustainability through our Earthwards program, which identifies and encourages and supports suppliers in achieving excellence by embedding sustainable social and environmental practices, including transparency, target setting and public disclosure, into their businesses and respective supply chain. A subset of this program tracks the Planet Water Program, which is an internally developed tool that indirectly considers water risk to certain raw materials originating from forest commodities such as wood-fiber and palm oil. Deforestation and forest degradation contribute to greenhouse gas emissions, biodiversity loss, shifts in water cycles and loss of economic value. Water’s impact on forest commodities is broadly assessed as part of a larger strategy to minimize our environmental footprint across our forest materials portfolio through the Wood Product Sustainability Policy and our Responsible Palm Oil Sourcing Policy. We also engage customers on product sustainability through our Earthwards program, which identifies and encourages and supports suppliers in achieving excellence by embedding sustainable social and environmental practices, including transparency, target setting and public disclosure, into their businesses and respective supply chain. A subset of this program tracks the Planet Water Program, which is an internally developed tool that indirectly considers water risk to certain raw materials originating from forest commodities such as wood-fiber and palm oil. Deforestation and forest degradation contribute to greenhouse gas emissions, biodiversity loss, shifts in water cycles and loss of economic value. Water’s impact on forest commodities is broadly assessed as part of a larger strategy to minimize our environmental footprint across our forest materials portfolio through the Wood Product Sustainability Policy and our Responsible Palm Oil Sourcing Policy.</td>
</tr>
<tr>
<td>Employees</td>
<td>Our 136,400 employees are a relevant stakeholder group included as part of water-related risk assessments, as employee concern over company sustainability practices in general, and water practices specifically, is one factor of many that may impact our ability to recruit and retain employees. We also assess how water issues can affect our employees — for example, during the Cape Town water crisis, ensuring the support of our people and their families was a crucial component of our Business Continuity Plan. At an enterprise level, we engage with employees through our Company-wide and site specific Townhalls, internal newsletters, and Our Voice surveys (issued on alternating years), internnews, formal and informal meetings, quarterly business updates, training, etc. Employee feedback regarding sustainable water practices specifically may come from a subset of these methods to understand general trends. The importance of water-related issues is considered for all three stages of the value chain, where operational risk is particularly relevant (both current and in the future). Operational water-risk issues are managed through our Water Risk Assessment tool, which evaluates water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory issues, total water use, economic implications (water spend), reputational impacts, and pharmaceuticals in the environment (PE) and personal care products in the environment (PCPE).</td>
</tr>
</tbody>
</table>

CDP
As a publicly traded company, investors are relevant and always included in water-related risk assessments. Investor concern about any risks, including water-related risk, could represent a risk to access capital under favorable conditions. At an enterprise level, we engage with investors on all issues through our Annual Report, Health for Humanity Report, annual shareholders meetings, investor releases, investor meetings and conferences. We also continue hosting our Health for Humanity Report webinar with investors to accompany the release of our annual Health for Humanity Report, providing shareholders the opportunity to engage and ask questions of leaders in across the key ESG (Environmental, Social, Governance) functions. Engagement on sustainable water practices specifically has been through annual sustainability reports and the CDP Water Risk Questionnaire. Stakeholder concerns (both current and future) are evaluated for all three stages of the value chain to determine their priority issues, which include water risk and responsible water stewardship. For example, the Company has had an ongoing dialogue with investor groups on issues such as pharmaceuticals in the environment (PfE) in supply chains and has used feedback and findings to inform ongoing commitments and strategy.

Local communities

Local communities are relevant and included in water-related risk assessments. Water represents a critical resource for local communities, and improper management can foster conflicts. It is also a component of our Public Position on Human Right to Water and, Our Position on Water and Waste Management, where we seek to preserve the quality of water resources in the communities in which we do business. At an enterprise level, we engage with local communities through collaboration and partnerships, philanthropy, employee volunteering, and sponsorships. The importance of water-related issues is identified for all three stages of the value chain, where operational risk is particularly relevant (both current and in the future). Operational water-risk issues are managed through our Water Risk Assessment tool, which evaluates water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory issues, total water use, economic implications (water spend), reputational impacts, and pharmaceuticals in the environment (PfE) and personal care products in the environment (PCP). The Water Risk Assessment tool focuses on community safe water and sewer access specifically, with site-level questionnaires on this topic.

NGOs

NGOs are part of our stakeholder engagement process as valuable partners with expertise in local and global issues, including water scarcity. At an enterprise level, NGOs are engaged through direct engagement, collaborative partnerships, sponsorships, organizational memberships, conferences, and social media. A subset of these methods may be used to engage on water issues specifically. The importance of water-related issues is identified for all three stages of the value chain, where operational risk is particularly relevant (both current and in the future). Operational water-risk issues are managed through our Water Risk Assessment tool, which evaluates water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory issues, total water use, economic implications (water spend), reputational impacts, and pharmaceuticals in the environment (PfE) and personal care products in the environment (PCP). This stakeholder is particularly relevant in areas of high water stress and facility-specific mitigation plans are created with local considerations in mind.

Other water users at a basin/catchment level

Other water users at a basin/catchment level are defined as relevant because of their strategic importance from an operational and/or reputational consideration. The importance of water-related issues for this stakeholder are identified for all three stages of the value chain, where operational risk is particularly relevant (both current and in the future). Operational water-risk issues are managed through our Water Risk Assessment tool, which evaluates water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory issues, total water use, economic implications (water spend), reputational impacts, and pharmaceuticals in the environment (PfE) and personal care products in the environment (PCP). This stakeholder is particularly relevant in areas of high water stress and facility-specific mitigation plans are created with local considerations in mind.

Regulators

As enforcers of local water-related laws where we conduct business, regulators are relevant stakeholders. As stated in our Public Position on Human Right to Water and Our Position on Water and Waste Management, we are committed to respecting human rights and complying with the local laws protecting these rights in the countries where we are present. Similarly, our Code of Business Conduct (CBC) requires compliance with local laws and regulations. At an enterprise level, regulators are engaged through governmental affairs liaisons, direct engagement, Johnson & Johnson Political Action Committee, meetings, and advocacy. Water issues may be engaged with a subset of these methods. Operational water-risk issues relevant to regulators are managed through our Water Risk Assessment tool, which evaluates water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory issues, total water use, economic implications (water spend), reputational impacts, and pharmaceuticals in the environment (PfE) and personal care products in the environment (PCP). This tool includes a site-specific questionnaire that focuses on current and evolving regulations. Our sites and suppliers are expected to maintain their operations in compliance with relevant local environmental regulations, including those related to water use, treatment and discharge. We also monitor regulatory change through our environmental management systems (required to be third-party certified for all manufacturing and R&D sites), and through our Emerging Issues work group.

River basin management authorities

River basin management authorities are defined as relevant because of their strategic importance from an operational and/or reputational consideration, where strong river basin governance contributes to adequate supply and minimizes conflict. The importance of water-related issues for this stakeholder are identified for all three stages of the value chain as part of this process, where operational risk is particularly relevant (both current and in the future). Operational water-risk issues are managed through our Water Risk Assessment tool, which evaluates water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory issues, total water use, economic implications (water spend), reputational impacts, and pharmaceuticals in the environment (PfE) and personal care products in the environment (PCP). This stakeholder is particularly relevant in areas of high water stress and facility-specific mitigation plans are created with local considerations in mind.

Statutory special interest groups at a local level

Statutory special interest groups at a local level are defined as relevant because of their strategic importance from an operational and/or reputational consideration. The importance of water-related issues for this stakeholder are identified for all three stages of the value chain as part of this process, where operational risk is particularly relevant (both current and in the future). Operational water-risk issues are managed through our Water Risk Assessment tool, which evaluates water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory issues, total water use, economic implications (water spend), reputational impacts, and pharmaceuticals in the environment (PfE) and personal care products in the environment (PCP). In particular, the Water Risk Assessment tool includes research on local activities and publications of relative interest groups at all evaluated facilities to ensure that local issues are being incorporated. This stakeholder is particularly relevant in areas of high water stress and facility-specific mitigation plans are created with local considerations in mind.

Suppliers

Suppliers are a relevant stakeholder because water scarcity in our supply chain could represent a business continuity issue if chronic or acute water impacts are not appropriately assessed and mitigated. At an enterprise level, suppliers are engaged through direct engagement, collaborative partnerships, Responsibility Standards for Suppliers, supplier scorecards, training and workshops, surveys, assessments and audits. A subset of these methods may be used for water risk topics specifically. The importance of water-related issues is identified for all three stages of the value chain, where supply chain risk is particularly relevant (both current and in the future). We request that some suppliers report using the CDP Supply Chain Water Security Questionnaire. The Company incentivizes suppliers to report by including their CDP score in our Supplier Scorecards, which include a mixture of other compliance, Environmental Health & Safety and business continuity topics) and are reviewed on an ongoing basis with business segment leads. Our suppliers are also expected to maintain their operations in compliance with relevant local environmental regulations, including those related to water use, treatment and discharge. We also monitor regulatory change through our environmental management systems (required to be third party certified for all manufacturing and research and development sites), and through our Emerging Issues working group.

Water utilities at a local level

Water utilities at a local level are defined as relevant because of their strategic importance from an operational and/or reputational consideration as the provider of approximately 70% of our water supply. The importance of water-related issues for this stakeholder are identified for all three stages of the value chain as part of this process, where operational risk is particularly relevant (both current and in the future). Operational water-risk issues are managed through our Water Risk Assessment tool, which evaluates water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory issues, total water use, economic implications (water spend), reputational impacts, and pharmaceuticals in the environment (PfE) and personal care products in the environment (PCP). This stakeholder is particularly relevant in areas of high water stress and facility-specific mitigation plans are created with local considerations in mind.

Other stakeholder, please specify

Please select
(W3.3d) Describe your organization's process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

Operations: The level of coverage of water-related risks is for all manufacturing and R&D sites within our operations (where the majority of our impacts are). This is assessed through our Water Risk Assessment tool, which evaluates many aspects of water risk. Inputs to the Water Risk Assessment tool include several models such as Water Supply Stress Index Model (WaSSI), WRI Aqueduct, Water Risk Filter, EarthStat, and SEDAC, which have varying assumptions but include risks/impacts 10+ years into the future. These tools were selected to provide a comprehensive view of risk from an ecological, social, economic and reputational perspective. Risks are classified at an asset level for risk mitigation plans, and overall risks are managed at an enterprise level as part of Health for Humanity 2020 Goal.

For each site classified as high risk, the Environmental Health, Safety and Sustainability (EHS&S) team provides guidance on risks and potential actions to mitigate the risks identified through the risk assessment process. Site personnel then conduct feasibility studies and mitigation plans to address the risks. Before approval, EHS&S reviews the proposed plans and analyzes the change in water risk categorization if the mitigation plans were implemented. In the case that risks cannot be fully mitigated and must be accepted, the site then integrates findings into existing Business Continuity Plans.

Value chain - supply chain: To prioritize engagement around sustainability issues including water, we have set a Health for Humanity 2020 Goal to enrol suppliers in our Sustainable Procurement Program (SPP) covering 80% of our spend. We further prioritize suppliers that may have more risk from being in an industry that is water-intensive and/or are located in an area of high water stress. These suppliers are requested to disclose more water-related information through the CDP Supply Chain Water Security Questionnaire. This information is used in Supplier Scorecards, which include a mixture of other compliance, EHS&S and business continuity topics. These scorecards are reviewed on an ongoing basis with Company Category leads to drive performance.

Additionally, as part of the EcoVadis assessment and corrective action plans, suppliers in industries that use significant water are required to provide details of policies and processes relating to water consumption, contamination and discharge. Suppliers with insufficient policies or processes are required to improve them through the corrective action plan. Currently around 1,600 suppliers in the EcoVadis program.

In 2020, we reviewed water risk for manufacturing and/or R&D sites. Water risk was reviewed based on water withdrawal per site and based on the Aqueduct baseline water stress level, and the Aqueduct water depletion level.

W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes, both in direct operations and the rest of our value chain

W4.1a
(W4.1a) How does your organization define substantive financial or strategic impact on your business?

Definition of ‘substantive financial or strategic impact’ when identifying or assessing water-related risks:

Risk management requires a broad understanding of internal and external factors that can impact achievement of strategic and business objectives. Historically, risks to the Company’s success have been categorized as Strategic, Operational, Compliance, and Financial & Reporting. However, as the world in which we operate becomes more complex and unpredictable, the corresponding risks and their potential impact have increased (The World Economic Forum Global Risks Report). To ensure the Johnson & Johnson Enterprise Risk Management (ERM) Framework appropriately incorporates the evolving risk landscape, our risk categories now also address Environmental, Social and Cybersecurity risks. Additionally, the Compliance risk category has been expanded to explicitly include legal and regulatory risk.

Our thinking about risk categories is also informed by the results of internal risk assessments and risk assurance work, as well as insights from various industry sources such as the Gartner Risk Management Leadership Council, The World Economic Forum Global Risks Report, The Global Reporting Initiative Framework, The Carbon Disclosure Project and The Task Force on Climate-related Financial Disclosures.

Financial risks are categorized according to their ability to impact the achievement of strategic and business decisions, including in the context of financial targets based upon our Global Growth Drivers and overall business performance. We define substantive financial risk at the enterprise level in context of Security & Exchange Commission (SEC) required disclosures around “Risk Factors” which are publicly disclosed annually in our 10-K. These risk factors consider both various qualitative and quantitative variables in assessing the potential financial impact to the enterprise.

While it is clear that climate change and the associated water impacts will have profound implications on the health for humanity, it is not always known with precision the exact magnitude or probability of future risks and how those may impact J&J. As a result, we use a definition for “substantive strategic impact” that enables us to analyze possible futures and put in place programs to increase the resilience of our organization in the face of uncertainty. Substantive strategic impacts are disclosed in this report, which are risks / opportunities with a meaningful impact to reputation and/or public trust, potential for action that could impede Johnson & Johnson from manufacturing or distributing some product volume, and are considered possible, likely, more likely or highly likely in the short- to long-term future.

All risks and opportunities disclosed meet the criteria for a substantive strategic impact but do not meet the criteria for a substantive financial risk for the purposes of this report.

(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

<table>
<thead>
<tr>
<th>Total number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1: 13</td>
<td>1-25</td>
<td>Facilities refers to all manufacturing and R&D sites as defined by our operational boundary. Risk is defined as the highest rated risk based on an in-house-designed risk assessment model that includes criteria from several water stress models and site-specific data.</td>
</tr>
</tbody>
</table>

(W4.1c) By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive financial or strategic impact on your business, and what is the potential business impact associated with those facilities?

Country/Area & River basin

China: Huang He (Yellow River)

Number of facilities exposed to water risk
1

% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
Number of facilities exposed to water risk
1
% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>
% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>
% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>
% company’s total global revenue that could be affected
Less than 1%

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>South Africa Other, please specify (SOUTH AFRICAN WATER MANAGEMENT AREAS (WMAs))</th>
</tr>
</thead>
</table>

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>China Yangtze River (Chang Jiang)</th>
</tr>
</thead>
</table>

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>United States of America Other, please specify (GHAAS Basin 891)</th>
</tr>
</thead>
</table>

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>India Godavari</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1
% company-wide facilities this represents
Less than 1%

Production value for the metals & mining activities associated with these facilities
<Not Applicable>
% company’s annual electricity generation that could be affected by these facilities
<Not Applicable>
% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>
% company’s total global revenue that could be affected
Less than 1%

Comment
<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Mexico</th>
<th>Other, please specify (Rio Grande)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk

1

% company-wide facilities this represents

Less than 1%

Production value for the metals & mining activities associated with these facilities

<Not Applicable>

% company's annual electricity generation that could be affected by these facilities

<Not Applicable>

% company's global oil & gas production volume that could be affected by these facilities

<Not Applicable>

% company's total global revenue that could be affected

Less than 1%

Comment
<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Production value for the metals & mining activities associated with these facilities</th>
<th>% company’s annual electricity generation that could be affected by these facilities</th>
<th>% company’s global oil & gas production volume that could be affected by these facilities</th>
<th>% company’s total global revenue that could be affected</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesia</td>
<td>1</td>
<td>Less than 1%</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Less than 1%</td>
<td></td>
</tr>
<tr>
<td>Other, please specify (GHAAS Basin 1666)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>1</td>
<td>Less than 1%</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Less than 1%</td>
<td></td>
</tr>
<tr>
<td>Other, please specify (GHAAS Basin 1834)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>1</td>
<td>Less than 1%</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Less than 1%</td>
<td></td>
</tr>
<tr>
<td>Meuse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>1</td>
<td>Less than 1%</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Less than 1%</td>
<td></td>
</tr>
<tr>
<td>Other, please specify (GHAAS Basin 4131)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of Company's</td>
<td>Affected by these Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Electricity Generation</td>
<td><Not Applicable></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Oil & Gas Production Volume</td>
<td><Not Applicable></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Global Revenue</td>
<td>Less than 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment

W4.2
(W4.2a) Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin

<table>
<thead>
<tr>
<th>South Africa</th>
<th>Other, please specify (SOUTH AFRICAN WATER MANAGEMENT AREAS (WMAs))</th>
</tr>
</thead>
</table>

Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Physical</th>
<th>Increased water stress</th>
</tr>
</thead>
</table>

Primary potential impact

Reduction or disruption in production capacity

Company-specific description

As water is a critical component in many of our products, we have implemented a comprehensive water risk assessment for our manufacturing and R&D sites to determine where to prioritize efforts and implement mitigation and reduction efforts. As a result of this effort, we have identified that 39% of our water is withdrawn in regions of high or extremely high baseline water stress. Growing population, economic activity, and consumption combined with climate change impacts and weak national- and international-level water governance and infrastructure are leading to increased water scarcity in many parts of the world. This impacts J&J in several locations. We have identified 13 facilities in our operations, classified as under water stress in Belgium, China, India, Indonesia, Italy, Mexico, South Africa, and the US. We have identified increased water risk, including water stress, as a substantive strategic climate-based risk to our operations with the potential to cause disruptions in operations or increase operational costs. For example, in 2017, we experienced increased operational costs to truck water onsite to our Aurangabad, India facility to meet production during a drought. Operational costs also increased when our Cape Town, South Africa facility was at risk of a city-wide water shortage from 2017 to 2018, and mitigation plans necessitated capital investments to ensure business continuity. While our Cape Town facility represents <5% of the water withdrawal from areas of extremely high risk, it is used as a recent example of potential risks from reduction or disruption in production capacity and how a comprehensive risk management approach can mitigate financial impacts.

Timeframe

Current up to one year

Magnitude of potential impact

Low

Likelihood

Unlikely

Are you able to provide a potential financial impact figure?

Yes, a single figure estimate

Potential financial impact figure (currency)

479514

Potential financial impact figure - minimum (currency)

<Not Applicable>

Potential financial impact figure - maximum (currency)

<Not Applicable>

Explanation of financial impact

In areas affected by extreme water shortages, such as Cape Town, South Africa, updates to the Business Continuity Plan, in addition to capital funding for high priority projects, are likely to mitigate short-term financial impacts. The most relevant financial impact figure for this risk is therefore ongoing capital expenditures to lower the risk of reduction or disruptions in production capacity. The reported figure is based on the capital investments at our Cape Town facility with a water benefit that were implemented from 2018 to 2020. This is a sub-set of the $14.4 million capital expenditures in 2020 related to projects with a water benefit associated with our comprehensive water risk assessment program.

Primary response to risk

Amend the Business Continuity Plan

Description of response

We are responding to this risk as part of our Corporate Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of our water withdrawal and implement resource protection plans at high-risk sites. In most cases, these resource protection plans include updates to Business Continuity Plans as well. Resource protection plans consider water issues such as stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory issues, total water use, economic implications (water spend), reputational impacts, and pharmaceuticals in the environment (PIE) and personal care products in the environment (PCPE). In many cases, these resource protection plans include projects with capital expenditures for initiatives designed to reduce our water usage and mitigate water risk. For example, in 2020, we implemented 21 projects in Asia Pacific, EMEA, Latin America and North America, where 14 of these projects occurred in areas categorized as “Critical” or “Major” from our internal water risk assessment process (which includes many factors, including water scarcity). As a case study specific to our efforts in Cape Town, our Consumer Health manufacturing facility in Cape Town has been supporting the city’s efforts to mitigate drought risk through several water security and water saving projects during the period 2018-2020, including the installation of air-cooled instead of water-cooled cooling towers.

Cost of response

15000

Explanation of cost of response

The cost of management is operational expenditures associated with the pre-gap assessment work done in 2020 against the Alliance for Water Stewardship Standard, which is a standard several of our facilities in water stressed areas, including our Cape Town facility, are seeking to implement as a continued improvement of sustainable water stewardship, beyond 2020.

(W4.2a) Provide details of risks identified in your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.
Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area</th>
<th>River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Rhine</td>
</tr>
</tbody>
</table>

Stage of value chain
Supply chain

Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Physical</th>
<th>Flooding</th>
</tr>
</thead>
</table>

Primary potential impact
Increased operating costs

Company-specific description
As the world's largest, most broadly-based healthcare company, J&J maintains operations in virtually all countries of the world and works with more than 51,000 suppliers across our three business segments. We manage a highly complex network of supplier relationships that are critical to business success and our ability to fulfill our obligations to those we serve. Water stress is anticipated to increase as climate change impacts global precipitation patterns and exacerbates droughts in certain areas. This can be expected to impact our global supply chain, particularly for some water-intensive industries such as chemicals or pharmaceutical ingredients. Water stress varies greatly throughout our supply chain, which may contain some water-intensive suppliers (such as pharmaceutical ingredients or chemicals). As part of our supply chain program, we assess annually a list of suppliers for multiple criteria, including if they are in a water-intensive industry or a region of water stress (using the WRI Aqueduct tool) and request that they report using the CDP Supply Chain Water Security Questionnaire. While we view the primary benefit of this process as increasing the knowledge of water risk within our supply chain, we are beginning to assess which of the risks our suppliers report, if any, can directly translate to a financial impact to J&J.

We evaluated a subset of suppliers that reported a quantified financial risk to the CDP Supply Chain Water Security Questionnaire and indicated that their response may have some impact on J&J. Of this subset, we identified the suppliers that reported a financial risk of over $50,000,000 and for which the risk has the potential to translate to an increased cost for J&J. The following river basins were associated with the aforementioned criteria: Chao Phraya (Thailand), Rhine (Austria and Germany), Mississippi (USA), Krishna (India), Grisalva (Mexico), Parana (Brazil) and Bravo (Mexico). These suppliers reported some risks (such as flooding, increased water stress and drought) that could translate into financial impacts that could potentially increase their costs to customers in the event that risk mitigation was not possible. The countries and river basins reported in this question is a subset of our suppliers who have provided information to the CDP Supply Chain Water Security Questionnaire and reported a detrimental water-related impact and is not reflective of all areas of physical water stress.

Timeframe
1-3 years

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
4900000

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanations of financial impact
The potential financial impact figure is calculated from supplier-reported financial impacts from water-related risks in J&J's 2020 request to respond to the CDP Supply Chain Water Security Questionnaire. The river basins Chao Phraya (Thailand), Rhine (Austria and Germany), Mississippi (USA), Krishna (India), Grisalva (Mexico), Parana (Brazil), Bravo (Mexico), Nile (Egypt) and Cooum and Ayda (India) were identified to potentially translate to an increase in cost (such as flooding, increased water stress and drought). J&J then allocated a total financial impact based on J&J's spend relative to total revenue of those specific suppliers (for example, if Supplier A's total revenue was $1M, J&J's spend was $100k, and they reported a risk of $200k, J&J's allocated cost would be (100k/$1M)*($200k)=20k). This resulted in an allocated potential financial risk of about $4,900,000.

Primary response to risk

| Supplier engagement | Increase supplier reporting on water |

Description of response
To prioritize engagement around sustainability issues including water, we have set a Health for Humanity 2020 Goal to enrol suppliers in our Sustainable Procurement Program (SPP) covering 80% of our spend. The SPP: 1) ensures supplier conformance with J&J's Responsibility Standards for Suppliers as well as applicable legal and regulatory requirements; and 2) encourages and supports suppliers in achieving excellence by embedding sustainable social and environmental practices, including transparency, target setting and public disclosure, into their businesses and respective supply chains. For water risk specifically, we also review if they are in a water intensive industry and/or a region of water stress, using the WRI Aqueduct tool. For this selection of suppliers, we also request that suppliers report using the CDP Supply Chain Water Security Questionnaire. J&J incentives suppliers to report by including their CDP score in our Supplier Scorecards, (which include a mixture of other compliance, EHS and business continuity topics) and are reviewed on an ongoing basis with business segment leads. Success is measured by progressing towards our goal of enrolling 80% of our spend in the SPP program. As of 2020, approximately 73% of our spend was enrolled (1,100 cumulative since program launch in 2015), with 121 suppliers responding to the CDP Water Security Questionnaire.

Cost of response
43000

Explanation of cost of response
The cost of the response includes fees to the CDP supply chain program, which is our primary method of collecting water data (qualitative and quantitative) from our suppliers. This cost is recurring.
W4.3

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?
Yes, we have identified opportunities, and some/all are being realized

W4.3a

(W4.3a) Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

<table>
<thead>
<tr>
<th>Type of opportunity</th>
<th>Efficiency</th>
</tr>
</thead>
</table>

Primary water-related opportunity

Cost savings

Company-specific description & strategy to realize opportunity

Operational savings are one aspect of our water risk program that presents an opportunity, particularly in areas of high water risk where current or future water supply disruptions may cause the price of water to increase or limit its availability. We use natural resources to make our products that millions of people rely on every day. It is vitally important that we operate our business within planetary boundaries. Equally, economies realized through resource efficiency support business resilience and continuity. As part of our corporate Health for Humanity 2020 Goal, we have managed this opportunity by conducting a comprehensive water risk assessment at 100% of manufacturing and R&D sites and implementing resource protection plans at the high-risk sites. Resource protection plans consider water issues such as water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, total water use, economic implications (water spend), and reputational impacts. In many cases, the result of these resource protection plans are projects that have ongoing operational savings from reduced water and/or energy consumption. This is an actual positive benefit for the organization and in 2020 applied to 21 projects in Asia Pacific, Europe, Middle East & Africa, Latin America and North America, where several projects will occur in areas categorized as “Critical” or “Major” from our internal water risk assessment process. As a result of these efforts, we have decreased global water withdrawal per million USD revenue from 1.83 million m³ in 2010 to 1.34 million m³ in 2020 – a reduction of 27%. As a case study, we continued the use of a biological treatment plant at our facility in Mexico that was installed in 2019 with a capacity of 75m³ per day to give a second life to greywater, manufacturing process water, cafeteria food preparation process water, and discharge water from organic waste processing. The treated water is used for irrigation of green areas and donation to the municipal water agency, resulting in reuse of 22% of the site’s wastewater.

Estimated timeframe for realization

1 to 3 years

Magnitude of potential financial impact

Low

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)

1500000

Potential financial impact figure – minimum (currency)

<Not Applicable>

Potential financial impact figure – maximum (currency)

<Not Applicable>

Explanation of financial impact

Financial impact was calculated based on the range of yearly estimated cost savings/avoidance from projects realized in 2020. The cost savings for these projects are derived from either reduced water or energy usage, as several of these projects have an energy saving benefit.

W5. Facility-level water accounting

W5.1

(W5.1) For each facility referenced in W4.1c, provide coordinates, water accounting data, and a comparison with the previous reporting year.

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 1</th>
</tr>
</thead>
</table>

Facility name (optional)

Facility 1

Country/Area & River basin

<table>
<thead>
<tr>
<th>China</th>
<th>Huang He (Yellow River)</th>
</tr>
</thead>
</table>

Latitude

34.28

Longitude

109.01

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
224.06

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0.52

Withdrawals from brackish surface water/seawater

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
223.53

Total water discharges at this facility (megaliters/year)
209.41

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
15.64

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
193.76

Total water consumption at this facility (megaliters/year)
14.65

Comparison of total consumption with previous reporting year
Lower

Please explain
Volumes are sourced from direct measurements and substituted with mass balance equations when necessary. Consumption is withdrawals minus discharges. Thresholds are determined by much higher / much lower being greater than 50%. This volume is expected to decrease in the future as a result of projects to achieve our Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing/R&D locations and implement resource protection plans at high-risk sites.

Facility reference number
Facility 2

Facility name (optional)
Facility 2

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Other, please specify (SOUTH AFRICAN WATER MANAGEMENT AREAS (WMAs))</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td></td>
</tr>
</tbody>
</table>

Latitude
-34.04

Longitude
18.46

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
31.73
Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
31.73
Total water discharges at this facility (megaliters/year)
22.21
Comparison of total discharges with previous reporting year
Higher
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
22.12
Total water consumption at this facility (megaliters/year)
9.62
Comparison of total consumption with previous reporting year
Lower

Please explain
Volumes are sourced from direct measurements and substituted with mass balance equations when necessary. Consumption is withdrawals minus discharges. Thresholds are determined by much higher / much lower being greater than 50%. This volume is expected to decrease in the future as a result of projects to achieve our Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing/R&D locations and implement resource protection plans at high-risk sites.

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name (optional)</td>
<td>Facility 3</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td>China Yangtze River (Chang Jiang)</td>
</tr>
<tr>
<td>Latitude</td>
<td>31</td>
</tr>
<tr>
<td>Longitude</td>
<td>121.38</td>
</tr>
<tr>
<td>Located in area with water stress</td>
<td>Yes</td>
</tr>
<tr>
<td>Primary power generation source for your electricity generation at this facility</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Oil & gas sector business division</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total water withdrawals at this facility (megaliters/year)</td>
<td>228</td>
</tr>
<tr>
<td>Comparison of total withdrawals with previous reporting year</td>
<td>Much lower</td>
</tr>
<tr>
<td>Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from groundwater - renewable</td>
<td>0</td>
</tr>
</tbody>
</table>
Withdrawals from groundwater - non-renewable 0
Withdrawals from produced/entrained water 0
Withdrawals from third party sources 228

Total water discharges at this facility (megaliters/year) 39.14
Comparison of total discharges with previous reporting year Much lower

Discharges to fresh surface water 0
Discharges to brackish surface water/seawater 0
Discharges to groundwater 0
Discharges to third party destinations 0

Total water consumption at this facility (megaliters/year) 188.86
Comparison of total consumption with previous reporting year Higher

Please explain
Volumes are sourced from direct measurements and substituted with mass balance equations when necessary. Consumption is withdrawals minus discharges. Thresholds are determined by much higher / much lower being greater than 50%. This volume is expected to decrease in the future as a result of projects to achieve our Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing/R&D locations and implement resource protection plans at high-risk sites.

Facility reference number
Facility 4

Facility name (optional)
Facility 4

Country/Area & River basin
United States of America Other, please specify (GHAAS Basin 871)

Latitude 40.16
Longitude -76.32

Located in area with water stress Yes

Primary power generation source for your electricity generation at this facility <Not Applicable>

Oil & gas sector business division <Not Applicable>

Total water withdrawals at this facility (megaliters/year) 357.91
Comparison of total withdrawals with previous reporting year Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes 0
Withdrawals from brackish surface water/seawater 0
Withdrawals from groundwater - renewable 0
Withdrawals from groundwater - non-renewable 0
Withdrawals from produced/entrained water 0
Withdrawals from third party sources 357.91
Total water discharges at this facility (megaliters/year)
216.2

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
216.2

Total water consumption at this facility (megaliters/year)
141.71

Comparison of total consumption with previous reporting year
Higher

Please explain
Volumes are sourced from direct measurements and substituted with mass balance equations when necessary. Consumption is withdrawals minus discharges. Thresholds are determined by much higher / much lower being greater than 50%. This volume is expected to decrease in the future as a result of projects to achieve our Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing/R&D locations and implement resource protection plans at high-risk sites.

Facility reference number
Facility 5

Facility name (optional)
Facility 5

Country/Area & River basin

| India | Godavari |

Latitude
19.88

Longitude
75.34

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
35.79

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
35.79

Total water discharges at this facility (megaliters/year)
11.88

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
6.95

Discharges to brackish surface water/seawater
Discharges to groundwater
0

Discharges to third party destinations
4.94

Total water consumption at this facility (megaliters/year)
23.9

Comparison of total consumption with previous reporting year
Higher

Please explain
Volumes are sourced from direct measurements and substituted with mass balance equations when necessary. Consumption is withdrawals minus discharges. Thresholds are determined by much higher / much lower being greater than 50%. This volume is expected to decrease in the future as a result of projects to achieve our Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing/R&D locations and implement resource protection plans at high-risk sites.

Facility reference number
Facility 6

Facility name (optional)
Facility 6

Country/Area & River basin

<table>
<thead>
<tr>
<th>Mexico</th>
<th>Other, please specify (Rio Grande)</th>
</tr>
</thead>
</table>

Latitude
31.62

Longitude
-106.36

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
100.31

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
100.31

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
100.31

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
100.31

Total water consumption at this facility (megaliters/year)
0
Comparison of total consumption with previous reporting year
About the same

Please explain
Volumes are sourced from direct measurements and substituted with mass balance equations when necessary. Consumption is withdrawals minus discharges. Thresholds are determined by much higher / much lower being greater than 50%. This volume is expected to decrease in the future as a result of projects to achieve our Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing/R&D locations and implement resource protection plans at high-risk sites.

Facility reference number
Facility 7
Facility name (optional)
Facility 7
Country/Area & River basin
Mexico Other, please specify (Rio Grande)
Latitude
31.61
Longitude
-106.39
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
90.17
Comparison of total withdrawals with previous reporting year
Higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
2.39
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
87.79
Total water discharges at this facility (megaliters/year)
90.71
Comparison of total discharges with previous reporting year
Higher
Discharges to fresh surface water
2.39
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
87.79
Total water consumption at this facility (megaliters/year)
0
Comparison of total consumption with previous reporting year
Much lower
Please explain
Volumes are sourced from direct measurements and substituted with mass balance equations when necessary. Consumption is withdrawals minus discharges. Thresholds are determined by much higher / much lower being greater than 50%. This volume is expected to decrease in the future as a result of projects to achieve our Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing/R&D locations and implement resource protection plans at high-risk sites.
Facility 8

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name (optional)</td>
<td>Facility 8</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td>Mexico</td>
</tr>
<tr>
<td>Latitude</td>
<td>19.17</td>
</tr>
<tr>
<td>Longitude</td>
<td>-98.4</td>
</tr>
<tr>
<td>Located in area with water stress</td>
<td>Yes</td>
</tr>
<tr>
<td>Primary power generation source for your electricity generation at this facility</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Oil & gas sector business division</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total water withdrawals at this facility (megaliters/year)</td>
<td>21.8</td>
</tr>
<tr>
<td>Comparison of total withdrawals with previous reporting year</td>
<td>Lower</td>
</tr>
<tr>
<td>Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from groundwater - renewable</td>
<td>21.8</td>
</tr>
<tr>
<td>Withdrawals from groundwater - non-renewable</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from produced/entrained water</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from third party sources</td>
<td>0</td>
</tr>
<tr>
<td>Total water discharges at this facility (megaliters/year)</td>
<td>14.19</td>
</tr>
<tr>
<td>Comparison of total discharges with previous reporting year</td>
<td>Lower</td>
</tr>
<tr>
<td>Discharges to fresh surface water</td>
<td>14.19</td>
</tr>
<tr>
<td>Discharges to brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>Discharges to groundwater</td>
<td>0</td>
</tr>
<tr>
<td>Discharges to third party destinations</td>
<td>0</td>
</tr>
<tr>
<td>Total water consumption at this facility (megaliters/year)</td>
<td>7.61</td>
</tr>
<tr>
<td>Comparison of total consumption with previous reporting year</td>
<td>Higher</td>
</tr>
</tbody>
</table>

Please explain

Volumes are sourced from direct measurements and substituted with mass balance equations when necessary. Consumption is withdrawals minus discharges. Thresholds are determined by much higher / much lower being greater than 50%. This volume is expected to decrease in the future as a result of projects to achieve our Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing/R&D locations and implement resource protection plans at high-risk sites.

Facility 9

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name (optional)</td>
<td>Facility 9</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td>Indonesia</td>
</tr>
</tbody>
</table>

CDP

Page 29 of 42
Latitude
-6.35
Longitude
106.86
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
37.3
Comparison of total withdrawals with previous reporting year
Higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
37.3
Total water discharges at this facility (megaliters/year)
8.34
Comparison of total discharges with previous reporting year
Much higher
Discharges to fresh surface water
8.34
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
28.96
Comparison of total consumption with previous reporting year
Lower
Please explain
Volumes are sourced from direct measurements and substituted with mass balance equations when necessary. Consumption is withdrawals minus discharges. Thresholds are determined by much higher / much lower being greater than 50%. This volume is expected to decrease in the future as a result of projects to achieve our Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing/R&D locations and implement resource protection plans at high-risk sites.

Facility reference number
Facility 10
Facility name (optional)
Facility 10
Country/Area & River basin
Puerto Rico

Latitude
18.26
Longitude
-65.98
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division

Total water withdrawals at this facility (megaliters/year)
321.13

Comparison of total withdrawals with previous reporting year
Higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
53.93
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
267.2

Total water discharges at this facility (megaliters/year)
173.61

Comparison of total discharges with previous reporting year
About the same
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
173.61

Total water consumption at this facility (megaliters/year)
147.52

Comparison of total consumption with previous reporting year
Much higher

Please explain
Volumes are sourced from direct measurements and substituted with mass balance equations when necessary. Consumption is withdrawals minus discharges. Thresholds are determined by much higher / much lower being greater than 50%. This volume is expected to decrease in the future as a result of projects to achieve our Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing/R&D locations and implement resource protection plans at high-risk sites.

Facility reference number
Facility 11

Facility name (optional)
Facility 11

Country/Area & River basin

<table>
<thead>
<tr>
<th>Belgium</th>
<th>Meuse</th>
</tr>
</thead>
</table>

Latitude
51.31

Longitude
4.87

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
589.15

Comparison of total withdrawals with previous reporting year
Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
74.12
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
515.03
Total water discharges at this facility (megaliters/year)
457.86
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
457.86
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
131.3
Comparison of total consumption with previous reporting year
Higher

Please explain
Volumes are sourced from direct measurements and substituted with mass balance equations when necessary. Consumption is withdrawals minus discharges. Thresholds are determined by much higher / much lower being greater than 50%. This volume is expected to decrease in the future as a result of projects to achieve our Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing/R&D locations and implement resource protection plans at high-risk sites.

Facility reference number
Facility 12
Facility name (optional)
Facility 12
Country/Area & River basin
Italy
Other, please specify (GHAAS Basin 4131)
Latitude
41.69
Longitude
12.59
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
443.62
Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
443.62
Withdrawals from groundwater - non-renewable
Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
63.55

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
63.55

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
380.07

Comparison of total consumption with previous reporting year
About the same

Please explain
Volumes are sourced from direct measurements and substituted with mass balance equations when necessary. Consumption is withdrawals minus discharges. Thresholds are determined by much higher / much lower being greater than 50%. This volume is expected to decrease in the future as a result of projects to achieve our Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing/R&D locations and implement resource protection plans at high-risk sites.
(W5.1a) For the facilities referenced in W5.1, what proportion of water accounting data has been externally verified?

Water withdrawals – total volumes

% verified
76-100

What standard and methodology was used?
Information relevant to our Health for Humanity 2020 Goals, including water KPIs, undergo 3rd party review, similar to verification, for public reporting.

Water withdrawals – volume by source

% verified
76-100

What standard and methodology was used?
Information relevant to our Health for Humanity 2020 Goals, including water KPIs, undergo 3rd party review, similar to verification, for public reporting.

Water withdrawals – quality

% verified
76-100

What standard and methodology was used?
All sites must verify drinking water quality and use an accredited lab for review.

Water discharges – total volumes

% verified
76-100

What standard and methodology was used?
Information relevant to our Health for Humanity 2020 Goals, including water KPIs, undergo 3rd party review, similar to verification, for public reporting.

Water discharges – volume by destination

% verified
76-100

What standard and methodology was used?
Information relevant to our Health for Humanity 2020 Goals, including water KPIs, undergo 3rd party review, similar to verification, for public reporting.

Water discharges – volume by treatment method

% verified
76-100

What standard and methodology was used?
Information relevant to our Health for Humanity 2020 Goals, including water KPIs, undergo 3rd party review, similar to verification, for public reporting.

Water discharge quality – quality by standard effluent parameters

% verified
76-100

What standard and methodology was used?
All sites have to have a verification of their effluent water quality and use an accredited lab for measurements.

Water discharge quality – temperature

% verified
76-100

What standard and methodology was used?
All sites have to have a verification of their effluent water quality and use an accredited lab for measurements.

Water consumption – total volume

% verified
76-100

What standard and methodology was used?
Information relevant to our Health for Humanity 2020 Goals, including water KPIs, undergo 3rd party review, similar to verification, for public reporting.

Water recycled/reused

% verified
76-100

What standard and methodology was used?
Information relevant to our Health for Humanity 2020 Goals, including water KPIs, undergo 3rd party review, similar to verification, for public reporting.

W6. Governance

W6.1
(W6.1) Does your organization have a water policy?
Yes, we have a documented water policy that is publicly available.

W6.1a

(W6.1a) Select the options that best describe the scope and content of your water policy.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-wide</td>
<td>Description of business dependency on water. Description of business impact on water. Description of water-related performance standards for direct operations. Description of water-related standards for procurement. Reference to international standards and widely-recognized water initiatives. Company water targets and goals. Commitment to align with public policy initiatives, such as the SDGs. Commitments beyond regulatory compliance. Commitment to water-related innovation. Commitment to stakeholder awareness and education. Commitment to water stewardship and/or collective action. Acknowledgement of the human right to water and sanitation. Recognition of environmental linkages, for example, due to climate change.</td>
</tr>
</tbody>
</table>

Methods to share the content of our water policies to the public include: 1) our Position on Water and Waste Management (describes our dependence and business impact on water, commitments beyond regulatory compliance, water stewardship and/or collective action, water-related innovation, and the links between water and climate change); 2) our Position on the Human Right to Water (as defined by the United Nations); 3) our annual Health for Humanity sustainability report (describes our company water targets and goals and commitment to stakeholder awareness and action); 4) our J&J Responsibility Standards for Suppliers, and 5) our Position on Impact of Pharmaceuticals and Personal Care Products in the Environment (PCPE). The rationale for this scope is to cover material water topics in our direct operations and value chain and demonstrate our commitment to these topics.

W6.2

(W6.2) Is there board level oversight of water-related issues within your organization?
Yes.

W6.2a

(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

<table>
<thead>
<tr>
<th>Position of Individual</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other C-Suite Officer</td>
<td>J&J's corporate governance structure is comprised of an external Board of Directors and an internal management leadership group – the Executive Committee. The individual with responsibility for water-related issues is the Executive Vice President & Chief Global Supply Chain Officer. As a member of the Executive Committee, and a management member of the Regulatory Compliance Committee and Science, Technology & Sustainability Committee (STSC), this position has direct oversight of the Environmental Health, Safety & Sustainability Department. Responsibility for water-related issues have been assigned to this position because it has direct responsibility for many inter-related climate & water-related risks and opportunities, including all aspects of supply chain and procurement for J&J business segments. One example of a water-related decision made by this individual/committee: this position approved a water-related Health for Humanity 2020 Goal in 2016.</td>
</tr>
</tbody>
</table>

W6.2b
(W6.2b) Provide further details on the board’s oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency that water-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which water-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled meetings - some meetings</td>
<td>Monitoring implementation and performance</td>
<td>Every quarter each subject matter expert (SMEs) for relevant Health for Humanity 2020 Goals provides a briefing to the Chief Sustainability Officer (CSO), who leads the Sustainability Department, regarding progress. This includes progress toward water-related goals and targets. The CSO provides regular updates (at least quarterly) to the Executive Vice President and Chief Global Supply Chain Officer, who is a member of the Company’s Executive Committee, and a management representative on the Science, Technology & Sustainability Committee (STSC) and the Regulatory Compliance Committee of the J&J Board of Directors. The CSO presents updates on the progress toward public water-related goals and targets to the STSC at least annually. The Executive Vice President and Chief Global Supply Chain Officer has ultimate approval over all water risk strategy, policies, and release of water risk-related information. Many of these topics would be scheduled line items only if there were new policies implemented. Otherwise, these would be as important matters arise. Additionally, several of these mechanisms have water risk integrated into the process but may not be reported to the board as a specific line item unless it is critical or requires additional input. For example, only the top risks are presented when an acquisition is presented to the Board, of which water is not likely to be at the top. Similarly, water budgets are typically handled through business segments but may have further review if needed.</td>
</tr>
</tbody>
</table>

(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

Name of the position(s) and/or committee(s)
Chief Sustainability Officer (CSO)

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
More frequently than quarterly

Please explain
The CSO, reports to the EVP and Chief Global Supply Chain Officer (CGSCO-the highest level of responsibility), a member of the company’s Executive Committee. The CSO is invited to Board Committee meetings for sustainability agenda items as needed. The CSO reports the status of water related activities and goals to the CGSCO as necessary and at least annually. The CSO reports progress on public facing goals, including water related goals, to the STSC at least annually. Several lines of business directly responsible for sustainability issues, including water risk, report to the CSO. This individual is the Business Lead for Health for Humanity 2020 Goals, which include water as one of the focus areas. For example, when J&J determined that a water risk goal was more appropriate than an absolute water use reduction goal (as climate change will have a localized effect on water in the future), SMEs determined an appropriate course of action and worked with the CSO to finalize the approach.

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

<table>
<thead>
<tr>
<th>Provide incentives for management of water-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

(W6.4a)
(W6.4a) What incentives are provided to C-suite employees or board members for the management of water-related issues (do not include the names of individuals)?

<table>
<thead>
<tr>
<th>Role(s) entitled to incentive</th>
<th>Performance indicator</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary reward</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief Purchasing Officer (CPO)</td>
<td>Supply chain engagement</td>
<td>The CPO is ultimately responsible for the success of J&J Procurement function and the achievement of our Health for Humanity 2020 Goal to enroll suppliers covering 80% of our spend in the Sustainable Procurement Program. Bonuses were awarded as a result of meeting several criteria, including achievement of the Health for Humanity 2020 Goals. Our CPO strongly believes that by collaborating with our partners to strengthen the social, environmental and economic performance of our supply chain, we are driving sustainability efforts beyond our four walls and strengthening J&J as well. Executive Vice President and Chief Global Supply Chain Officer had oversight of our Health for Humanity 2020 Goals, which included water-related goals. Bonuses were awarded as a result of meeting many criteria, which may have included progress against J&J's Health for Humanity 2020 Goals.</td>
</tr>
<tr>
<td>Other C-suite Officer (Executive Vice President & Chief Global Supply Chain Officer)</td>
<td>Other, please specify (Implementation of water risk mitigation plans)</td>
<td></td>
</tr>
<tr>
<td>Non-monetary reward</td>
<td>No one is entitled to these incentives</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

W6.5

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?

- Yes, trade associations
- Yes, funding research organizations

W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?

J&J defines strategic imperatives as well as internal policies and implements processes to assure adherence to policies. For example, J&J's Statement on Human Right to Water and Position on Water and Waste Management was reviewed by senior management and is shared publicly with all stakeholders on our website. The Science, Technology & Sustainability Committee of J&J’s Board of Directors regularly reviews the Company's policies, programs and practices on environment, health, and sustainability, including enterprise goals directed at water risk.

If inconsistencies are discovered: We are a member of trade associations that advocate for our industry and market-based health solutions, and we provide financial support to several policy development organizations and think tanks. We acknowledge that we may not align with or support every public position each of these broad-based groups take. However, when we do disagree with a position, we have a range of approaches we can employ to respond, and we believe that our dissenting voice has greater impact as a member of these organizations. We take input from our stakeholders and determine how best to express our views in an organization—from simply declining to participate in certain initiatives sponsored by the organization, to partnering with other members to amplify our viewpoint both within the organization and externally, to reaching out directly to the organization's leadership to examine a possible change in position.

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?

No, and we have no plans to do so

W7. Business strategy

W7.1
Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Long-term business objectives</th>
<th>Water-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>11-15</td>
<td>Water-related issues are integrated as part of our overall sustainability approach that closely links business strategy, including water, to our long-term business objectives. Environmental health, including water risk, is a focus area of our sustainability approach because water supply and quality is vital to the importance of our operations, and climate change is anticipated to impact the availability of water in the future. Water issues integrated into our long-term business objectives include water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management, regulatory requirements, total water use, economic implications (water spend), and reputational impacts. These issues are analyzed and prioritized in our comprehensive water risk assessment process. This decision was taken to mitigate water risk to minimize the probability of supply chain disruptions, associated loss of revenue, and reputational concerns. With a longer-term outlook (11-15 years) we can set 5-year interim goals such as our Health for Humanity 2020 Goals to ensure we have measurable KPIs that keep us on track for long-term our business objectives. Risk mitigation plans incorporate both immediate concerns as well as long-term viability of water given current and project water use.</td>
</tr>
</tbody>
</table>

Strategy for achieving long-term objectives

| Yes, water-related issues are integrated | 11-15 | The strategy for achieving our long-term objective to mitigate water risk is our corporate Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing and R&D sites and implement resource protection plans at high-risk sites. Resource protection plans consider water issues such as water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management, regulatory requirements, total water use, economic implications (water spend), and reputational impacts. This decision was taken to incorporate water risk in our corporate goals in order to use an existing program with past successes. With a longer-term outlook (11-15 years) we can set 5-year interim goals such as our Health for Humanity 2020 Goals to ensure we have measurable KPIs behind our long-term strategy that keep us on track. Our guiding strategy is to take a long-term approach to environmental and water stewardship. Caring for the environment and respecting the earth's finite resources have been enshrined in Our Credo (written in 1943) as a fundamental element of business’s role in society for decades, which calls for “protecting the environment and natural resources”, among other principles. |

Financial planning

| Yes, water-related issues are integrated | 11-15 | Water-related issues are integrated into our financial planning process through either our water risk assessment program or indirectly through our CO2 Capital Relief Program. While this capital fund is specifically for projects with a carbon benefit, there are many instances where there is a similar water improvement, and many water projects are currently funded through this dedicated allocation of $40 million available per year. We are working to further integrate water projects into this dedicated capital funding approach. With a longer-term outlook (11-15 years) we can set 5-year interim goals such as our Health for Humanity 2020 Goals to ensure we have measurable KPIs around which financial planning can occur. J&J recognizes that mitigating climate risk, including water, requires a long-term planning time. Water issues integrated into our long-term business objectives include: water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory, total water use, economic implications (water spend), and reputational impacts. These issues are analyzed and prioritized in our comprehensive water risk assessment process. |

(W7.2) What is the trend in your organization’s water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

Row 1

| Water-related CAPEX (+/- % change) | 111 |
| Water-related OPEX (+/- % change) | -33 |

Please explain

CAPEX investment has been increasing as a result of our Health for Humanity 2020 goal to conduct a comprehensive water risk assessment at 100% of manufacturing and R&D sites and to implement resource protection plans at high-risk sites. To complete our goal on time, CAPEX spend is expected to peak in 2020 and is expected to decrease in 2021 by 33%. Water-related expenditures for CAPEX include 21 projects implemented in 2020 in many facilities throughout the world, including Asia Pacific, EMEA, North America, and Africa. OPEX anticipated forward trend is +6.9% which is calculated by taking the compound annual growth rate (CAGR) from 2017 to 2020. Water-related OPEX expenditures include water withdrawal and discharge costs (mainly to third parties such as water utilities and wastewater treatment plants).

(W7.3) Does your organization use climate-related scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Our water-specific risk assessment model features tools that use climate-related scenario analysis, e.g. the WRI Aqueduct, Water Supply Stress Index Model (WaSSI), Water Risk Filter and Socio-Economic Design and Applications Center (SEDAC). J&J also undertook a qualitative climate-related scenario analysis in line with the TCFD recommendations in 2018. 9 existing climate scenarios were evaluated covering transitional and physical risks, with the IEA’s 2018 World Energy Outlook selected as a reference for transitional risks and the IPCC AR5 selected as reference for physical risks. Indicators inc. carbon pricing, political instability, sustainable material substitution, commodity availability, fossil fuel cost, consumer awareness and stakeholder concern, severe weather events, long-term shifts in climate patterns, and growth for sustainable business were developed and assessed under a business as usual and Low-Carbon. J&J made a decision in 2020 to publish our TCFD disclosures publicly.</td>
</tr>
</tbody>
</table>

(W7.3a) Has your organization identified any water-related outcomes from your climate-related scenario analysis?

Yes
(W7.3b) What water-related outcomes were identified from the use of climate-related scenario analysis, and what was your organization’s response?

<table>
<thead>
<tr>
<th>Row</th>
<th>Climate-related scenarios and models applied</th>
<th>Description of possible water-related outcomes</th>
<th>Company response to possible water-related outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IEA Sustainable Development Scenario, Other, please specify (Sector-specific tools modeling H2O risk)</td>
<td>In addition to J&J’s Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing and R&D sites and implement resource protection plans at high-risk sites by 2020, J&J also undertook a qualitative climate-related scenario analysis in line with the TCFD recommendations in 2018. Related to the Health for Humanity Goal, our risk assessment model features several tools that use climate-related scenario analysis, such as the WRI Aqueduct, Water Supply Stress Index Model (WaSSI), Water Risk Filter, and Socio-Economic Design and Applications Center (SEDAC). These tools model the impacts of water availability under various climate change scenarios, which are used to categorize water risk at a site. This information is used with other risk model inputs to evaluate scenarios of water stress/scarcity, projected future increases in site and watershed demand, upstream storage, flooding, drought, watershed health, community safe water and sewer access, waste water management and regulatory issues, total water use, economic implications (water spend), and reputational impacts. Related to the TCFD-aligned climate-related scenario analysis, J&J has responded to scenario analysis as part of our water risk assessments by creating mitigation plans for all sites categorized by high water risk. Anticipated timescale for responses: By the end of 2019, 100% of all high-risk sites developed mitigation plans. By the end of 2020, 61% of all high-risk sites completed implementation of mitigation plans and the remaining 39% budgeted for completion in 2021.</td>
<td>Operational or strategy response to water-related outcomes: J&J has responded to scenario analysis as part of our water risk assessments by creating mitigation plans for all sites categorized by high water risk. Anticipated timescale for responses: By the end of 2019, 100% of all high-risk sites developed mitigation plans. By the end of 2020, 61% of all high-risk sites completed implementation of mitigation plans and the remaining 39% budgeted for completion in 2021. Some aspects of this program are likely to continue in the medium-term future.</td>
</tr>
</tbody>
</table>

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water?

No, but we are currently exploring water valuation practices

Please explain

J&J is exploring water pricing as one approach to strategic, operational and financial planning. In the past several years we have shifted focus to water risk rather than absolute water reductions. This is reflected in our Health for Humanity 2020 Goal to conduct a comprehensive water risk assessment at 100% of manufacturing and R&D sites and implement resource protection plans at high-risk sites. By the end of 2019, 100% of all high-risk sites developed mitigation plans. By the end of 2020, 61% of all high-risk sites completed implementation of mitigation plans and the remaining 39% budgeted for completion in 2021. While our current process is using existing funding mechanisms in combination with mitigation plans to prioritize water reductions in areas of high stress, we may incorporate other mechanisms such as a dedicated water capital fund, or an internal price on water.

W8. Targets

W8.1

(W8.1) Describe your approach to setting and monitoring water-related targets and/or goals.

<table>
<thead>
<tr>
<th>Levels for targets and/or goals</th>
<th>Monitoring at corporate level</th>
<th>Approach to setting and monitoring targets and/or goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-wide targets and goals</td>
<td>Targets are monitored at the corporate level</td>
<td>Our approach to water-related targets and goals is to improve water efficiency across our operations by reducing water demand and increasing water reuse, and to prioritize water management actions using a risk-based approach that accounts for location-specific water risks at our sites worldwide. Our J&J Health for Humanity 2020 Goal (an enterprise-wide goal) is to conduct a comprehensive water risk assessment at 100% of manufacturing and R&D sites, and implement resource protection plans at high-risk sites, which can involve site-specific targets. By the end of 2019, 100% of all high-risk sites developed mitigation plans. By the end of 2020, 61% of all high-risk sites completed implementation of mitigation plans and the remaining 39% budgeted for completion in 2021. Enterprise-level goals are also tracked at the business level, where each business segment tracks the status of relevant sites and progress towards any targets. Targets are also cascaded to the site-level in two ways. If a site is identified as high-risk, a site-specific target may be implemented as part of a site Water Risk Mitigation plan for progress towards our Health for Humanity 2020 Goal. Additionally, we certify all manufacturing and R&D sites to ISO 14001 Environmental Management System Standard within three years of establishment or acquisition. Under this certification, sites must define environment aspects and impacts and evaluate the relevance of water, among other things. In some cases, continuous improvement plans may be implemented with site-specific targets. We ensure targets and goals reflect geographic, regulatory and other contextual factors through an in-house risk assessment tool that leverages several water stress models, regional/site media coverage on water risks, local regulatory factors, site wastewater management and watershed health, water use and costs, in addition to many other inputs and processes. Any site-specific goals are integrated into this risk assessment process and formalized in Business Continuity Plans and Risk Mitigation Plans. Water usage is tracked in dedicated internal databases and monitored on a frequent basis (either quarterly or annually) at both a site and corporate level.</td>
</tr>
<tr>
<td>Business level specific targets and/or goals</td>
<td>Goals are monitored at the corporate level</td>
<td></td>
</tr>
<tr>
<td>Site/facility specific targets and/or goals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W8.1a
(W8.1a) Provide details of your water targets that are monitored at the corporate level, and the progress made.

Target reference number
Target 1

Category of target
Other, please specify (Risk Mitigation Plans - High-Risk Sites)

Level
Company-wide

Primary motivation
Risk mitigation

Description of target
Our approach to water-related targets and goals is to improve water efficiency across our operations by reducing water demand and increasing water reuse, and to prioritize water management actions using a risk-based approach that accounts for location-specific water risks at our sites worldwide. Our J&J Health for Humanity 2020 Goal is to conduct a comprehensive water risk assessment at 100% of manufacturing and R&D sites, and implement resource protection plans at high-risk sites, which can involve site-specific targets.

Quantitative metric
Other, please specify (Budget Allocated - High-Risk Sites)

Baseline year
2015

Start year
2016

Target year
2020

% of target achieved
100

Please explain
By the end of 2019, 100% of all high-risk sites identified developed mitigation plans. By the end of 2020, 61% of all high-risk sites completed implementation of mitigation plans and the remaining 39% are budgeted for completion in 2021.

Target reference number
Target 2

Category of target
Other, please specify (Water risk assessments)

Level
Company-wide

Primary motivation
Risk mitigation

Description of target
Our approach to water-related targets and goals is to improve water efficiency across our operations by reducing water demand and increasing water reuse, and to prioritize water management actions using a risk-based approach that accounts for location-specific water risks at our sites worldwide. Our J&J Health for Humanity 2020 Goal is to conduct a comprehensive water risk assessment at 100% of manufacturing and R&D sites, and implement resource protection plans at the high-risk sites, which can involve site-specific targets.

Quantitative metric
Other, please specify (Risk Assessments Conducted)

Baseline year
2015

Start year
2016

Target year
2020

% of target achieved
100

Please explain
Our J&J Health for Humanity 2020 Goal was to conduct a comprehensive water risk assessment at 100% of manufacturing and R&D sites and implement resource protection plans at the high-risk sites by 2020. As of 2019, J&J had conducted a risk assessment of all manufacturing and R&D sites and achieved this target in 2020.

W8.1b
Goal
Other, please specify (Prioritize water actions with risk lens)

Level
Company-wide

Motivation
Risk mitigation

Description of goal
Our J&J Health for Humanity 2020 Goal is to conduct a comprehensive water risk assessment at 100% of manufacturing and R&D sites, and implement resource protection plans at high-risk sites, which can involve site-specific targets. The Health for Humanity 2020 Goal is important to J&J because water is a vital resource to our operations (in alignment with our water dependency as reported) and implementing water risk mitigation plans in 31 locations worldwide where water risk has been identified aids in the resiliency of our business. Our approach to water-related targets and goals is to improve water efficiency across our operations by reducing water demand and increasing water reuse, and to prioritize water management actions using a risk-based approach that accounts for location-specific water risks at our sites worldwide. This goal was chosen at a corporate level to ensure that local water risk realities would be prioritized appropriately throughout our organization even if local water cost do not meet traditional capital investment requirements, in alignment with the vital importance of water quality and quantity to our operations. J&J is implementing the goal by conducting local assessments and tracking centrally company-wide to ensure that activities outlined in site-specific risk mitigation plans are appropriately prioritized.

Baseline year
2015

Start year
2016

End year
2020

Progress
Indicators used to assess progress are development of detailed mitigation plans with budget allocated for implementation. The threshold for success is measured by percent of high-risk facilities sites with detailed mitigation plans having budget allocated for implementation; interim goals include 22% in 2017, 47% in 2018 and 100% in 2019. By the end of 2019, 100% of all high-risk sites identified developed mitigation plans. By the end of 2020, 61% of all high-risk sites completed implementation of mitigation plans and the remaining 39% budgeted for completion in 2021.

W9. Verification

W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?
No, but we are actively considering verifying within the next two years

W10. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.

W10.1

(W10.1) Provide details for the person that has signed off (approved) your CDP water response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Vice President and Chief Global Supply Chain Officer, member of the company’s Executive Committee</td>
<td>Board/Executive board</td>
</tr>
</tbody>
</table>

W10.2

(W10.2) Please indicate whether your organization agrees for CDP to transfer your publicly disclosed data on your impact and risk response strategies to the CEO Water Mandate's Water Action Hub (applies only to W2.1a (response to impacts), W4.2 and W4.2a (response to risks)).
No

SW. Supply chain module
SW0.1

(SW0.1) What is your organization's annual revenue for the reporting period?

<table>
<thead>
<tr>
<th>Row 1</th>
<th>Annual revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2584000000</td>
</tr>
</tbody>
</table>

SW0.2

(SW0.2) Do you have an ISIN for your organization that you are willing to share with CDP?

No

SW1.1

(SW1.1) Could any of your facilities reported in W5.1 have an impact on a requesting CDP supply chain member?

This is confidential

SW1.2

(SW1.2) Are you able to provide geolocation data for your facilities?

<table>
<thead>
<tr>
<th>Are you able to provide geolocation data for your facilities?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, this is confidential data</td>
<td></td>
</tr>
</tbody>
</table>

SW2.1

(SW2.1) Please propose any mutually beneficial water-related projects you could collaborate on with specific CDP supply chain members.

SW2.2

(SW2.2) Have any water projects been implemented due to CDP supply chain member engagement?

No

SW3.1

(SW3.1) Provide any available water intensity values for your organization’s products or services.

Submit your response

In which language are you submitting your response?

English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>I am submitting to</th>
<th>Public or Non-Public Submission</th>
<th>Are you ready to submit the additional Supply Chain questions?</th>
</tr>
</thead>
<tbody>
<tr>
<td>I am submitting my response</td>
<td>Investors, Customers</td>
<td>Public</td>
</tr>
</tbody>
</table>

Please confirm below

I have read and accept the applicable Terms